Chapter 10 Circles

- 10.1 Lines and Segments That Intersect Circles
- 10.2 Finding Arc Measures
- 10.3 Using Chords
- **10.4 Inscribed Angles and Polygons**
- 10.5 Angle Relationships in Circles
- 10.6 Segment Relationships in Circles
- 10.7 Circles in the Coordinate Plane

10.4 Inscribed Angles and Polygons Vocabulary

- Inscribed angle An angle whose vertex is on a circle and whose sides contain chords of the circle.
- Intercepted arc An arc that lies between two lines, rays, or segments.

10.4 Inscribed Angles and Polygons Vocabulary

- Inscribed polygon A polygon whose vertices all lie on one circle.
- Circumscribed circle The circle that contains all the vertices of an inscribed polygon.

Theorems

Inscribed Angle Theorem	The measure of an inscribed angle is one-half the measure of its intercepted arc.
Inscribed Angles of a Circle Theorem	If two inscribed angles of a circle intercept the same arc, then the angles are congruent.

Example

$m \angle RST =$

Example

mRS = $m\angle STR =$

What can you say about: $m \angle TSU$ and $m \angle TRU$?

 ΔTSW and ΔURW ?

Theorems

Inscribed Right Triangle Theorem	If a right triangle is inscribed in a circle, then the hypotenuse is a diameter of the circle. Conversely, if one side of an inscribed triangle is a diameter of the circle, then the triangle is a right triangle and the angle opposite the diameter is the right angle.
Inscribed Quadrilateral Theorem	A quadrilateral can be inscribed in a circle if and only if its opposite angles are supplementary.

Why are $\angle F$ and $\angle D$ supplementary? (Hint: Use Inscribed Angles Theorem)

Examples

a) Solve for x.

b) Solve for y and z.

